If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12k^2-6k=0
a = 12; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·12·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*12}=\frac{0}{24} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*12}=\frac{12}{24} =1/2 $
| -3z-0.8=4z | | 10²+x²=26² | | 8x-14=6x+ | | 2(x+6)=2+(6+1/3x) | | 8p−6p=10 | | 3x+141=360 | | 7(x-1)=3x+5 | | c=2-5 | | -2/3x=-19 | | 2(n+8)-(-5n-9)=6n | | 2x+220=360 | | 4x=-3+3(2x+3) | | −5(1−5k)−4(2k+5)k=2 | | 4(x-10)=6(x-1) | | 5y*(86-y)=86-4y | | 2(x-10)-65=-5 | | C=3.14•16m | | 6x+(-9)=3x-2 | | -(5t-13)=-2 | | 2/3x=-19 | | 5x+(3x+2)=90 | | -3(z-8)=-2z-3 | | 0.000362=4E-05x | | x+2x+x+2x=84 | | 12m-28=160 | | v/2=(-6) | | W/4+5=w/3=10 | | 1/3y=1/8 | | 24=2*3.14*r | | 4(x+5)-3(x+2)=5 | | -7x-60=x2+10x | | 8x+1/7=1 |